Lung Nodule Detection in Low-dose and High-resolution Ct Scans
نویسنده
چکیده
We are developing a computer-aided detection (CAD) system for the identification of small pulmonary nodules in screening CT scans. The main modules of our system, i.e. a dot-enhancement filter for nodule candidate selection and a neural classifier for false positive finding reduction, are described. The preliminary results obtained on the so-far collected database of lung CT are discussed.
منابع مشابه
A New Computer-Aided Detection System for Pulmonary Nodule in CT Scan Images of Cancerous Patients
Introduction: In the lung cancers, a computer-aided detection system that is capable of detecting very small glands in high volume of CT images is very useful.This study provided a novelsystem for detection of pulmonary nodules in CT image. Methods: In a case-control study, CT scans of the chest of 20 patients referred to Yazd Social Security Hospital were examined. In the two-dimensional and ...
متن کاملUltra-Low-Dose MDCT of the Chest: Influence on Automated Lung Nodule Detection
OBJECTIVE To evaluate the relationship between CT dose and the performance of a computer-aided diagnosis (CAD) system, and to determine how best to minimize patient exposure to ionizing radiation while maintaining sufficient image quality for automated lung nodule detection, by the use of lung cancer screening CT. MATERIALS AND METHODS Twenty-five asymptomatic volunteers participated in the s...
متن کاملCancer in pulmonary nodules detected on first screening CT.
BACKGROUND Major issues in the implementation of screening for lung cancer by means of low-dose computed tomography (CT) are the definition of a positive result and the management of lung nodules detected on the scans. We conducted a population-based prospective study to determine factors predicting the probability that lung nodules detected on the first screening low-dose CT scans are malignan...
متن کاملAutomatic Lung Cancer Detection and Diagnosis Using Hand Crafted and Deep Learning Features
This paper presents a lung nodule detection and classification system which utilizes a combination of hand crafted and deep learning features. Hand crafted features were obtained from modified methods of bag of frequencies, and taxonomic indices. We included a robust radius estimation algorithm that resulted in an average error of 1.29 pixels. Hand crafted features were obtained from 3D low dos...
متن کاملDetection and Attention: Diagnosing Pulmonary Lung Cancer from CT by Imitating Physicians
This paper proposes a novel and efficient method to build a Computer-Aided Diagnoses (CAD) system for lung nodule detection based on Computed Tomography (CT). This task was treated as an Object Detection on Video (VID) problem by imitating how a radiologist reads CT scans. A lung nodule detector was trained to automatically learn nodule features from still images to detect lung nodule candidate...
متن کامل